shape and size of existing satellites must be examined in the light of the
current or projected capabilities of the space-time integral equation method
before the target set can be specified.

It is also likely that a meaningful test of the method will pre-
clude using targets as similar in RCS as those assumed in this study because
of the unavoidable one or two dB RCS calibration errors. Attempting to

minimize this can greatly increase the cost of the experiment.

7.2.2 Target Dynamical Motion

The deliverable data items from KREMS are in many formats. The data
cost can be greatly reduced if the so-called catalog or transcription tapes
"4,5,16,17 7 from ALTAIR and TRADEX are used for the experimental test of
the classification method. These tapes contain RCS data at 40 observations
per second for ALTAIR and 10 observations per second for TRADEX [167]. The
RCS values are averages of the single pulse observations so that the obser-
vation rate must be consistent with the target aspect rate in order not to
smear the target signature (that is, average pulses at significantly dif-
ferent target RCS). In this respect, the TRADEX Catalog tape will limit
the maximum aspect rate because it averages RCS over a longer period of time
(o1 seconds).

The effect of aspect changes on the apparent target RCS depends
on the size of the target and the radar operating frequency. For large
targets at high frequencies, only a small aspect change can result in a sig- ~
nificant change in the RCS. This relationship can be quantified in an approx-
imate way by considering a right circular cylinder tumbling end over end and
viewed with a radar in the plane perpendicular to the axis of rotation (this
is the worst case). The approximate RCS of a cylinder is risj

Vsin (kL cos w) <

olp) = “o kL cos .,

where k = 2v~/5 is the radar wave number, ©® is the aspect, L is the cylinder
length and o is the broadside RCS. The width of the lobes in this scattering
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pattern are » /2L radians. If the cylinder is rotating at () radians per
second, ) /(2LQ) seconds will be required for one entire lobe to evolve.
If at least N observations are required to acceptably describe the RCS vari-
ation during this time, the radar observation rate, fs, must satisfy

Lf

fs 240N = (7-1)

where f is the radar frequency, c¢c is the speed of light, and T = 2v/{2 is
the tumble period. In this respect the TRADEX radar at S band (2950.8 MHz)
demands the highest observation rate. On the Catalog tapes for TRADEX,

fs = 10, and equation (7-1) can be used to show acceptable tumble period --
target size pairs for a given value of Ne Figure 23 shows the curve

= 4nNf

T
cfs

L,

for the S band TRADEX Catalog tape (fs = 10) and N = 10 samples per lobe.
Targets whose size and dynamical motion put them well under this curve should
be excluded from the target set, not because of any limitation of the classi-
fication method, but because the Catalog tape has only ten observations

per second.*

743 SPECIFIC DATA REQUIREMENTS

As indicated in Appendix 10.3, evaluation of the likelihood func-
tions requires knowledge of the target range in addition to RCS measurementse.
Evaluation of the aspect estimation performance could be done for stabilized

targets if azimuth and elevation measurements were also available.

In summary, the desired data from ALTAIR and TRADEX are target
RCS at four frequencies and two receive polarizations as well as range,
azimuth and elevation at the nominal Catalog tape rate for the major por=-
tion of at least one pass of each of the selected targets. As pointed
out by Roth [37, data specifying the noise level in the receiver channels

as well as the level of isolation between the cross-polarized channels must

*
The use of MINCOM or instrumentation tapes would remove this restriction,
but greatly increase the experiment cost.
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be known.

7.4 TONOSPHERE EFFECTS

Since circular polarization is to be used, Faraday rotation will
not be a problem. The effects of ionospheric scintillation 3,14,197,
however, must be considered. If the classifier is not modified to account
for this phenomenon as discussed in previous sections, there are two alter-
natives. The target set would be restricted to satellites with orbit alti-
tudes less than 300 kilometers 3], or only data from periods of negligible
ionospheric scintillation could be processed. The former procedure greatly
reduces the number of candidate §atellites for the target set and may not be
feasible. The latter means that additional information about the existence
of scintillation is required during the actual data collection so as to
avoid rescheduling the exercise at a much later dates.
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SECTION 8
SUMMARY AND CONCLUSIONS

The objectives of this contract were to obtain the general expres-
sion for the impulse response of the prolate spheroid and sphere-capped
cylinder as a function of arbitrary incident angle and polarizaticnj; to
generalize the frequency space-trajectory classification technique to include
unknown target aspect angle and polarization; to apply these results using
the parameters of existing radars to demonstrate the decision process on a
sphere, prolate spheroid, and sphere-capped cylinder of comparable size,
including the effects of additive noise; and to plan experiments and deter-
mine which data would be needed to demonstrate the technique using real
satellite data. The results discussed in the previous sections and in the
attached appendices show that these objectives have been met or exceeded

in every respecte.

Several additional contributions were made during the course of
the study. The classifier algorithm was developed from the foundation of
statistical decision theory which not only provides excellent target classi-
fication performance, but also enables a more fundamental understanding of
the importance of the various factors (for example radar system parameters)
and operations (such as aspect estimation) which enter into any multifre-
quency classification scheme. The effect of the additive noise was realis-
tically treated by modeling the radar receiver. The classifier was tested
by simulating the motion of orbiting vehicles and the results show that
early and reliable classification is achievable with this method. An advan=-
tage of the method is the automatic estimation of target aspect which could
be used for target motion assessment. In addition, a measure of decision
confidence as well as the capability to reject unknown targets were developed
based on fundamental probabilistic considerations.

The major conclusion of this work is that the multifrequency
approach to satellite object identification can be efficacious with opera-
tional radar technology. Only the data processing portions of existing
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radar installations need be modified in order to apply the technique. In
addition, because of the generality of the space-time integral equation
method, a priori unknown or hypothetical target shapes can be identified
without resorting to costly and tedious measurement techniques to form

the signature library.

Future work on these ideas could include not only an experimental
test as outlined in Section 7, but also further effort at extending the
capabilities of the space time integral equation method to more complicated
geometriese In addition, the classifier algorithm could be improved to
include prior statistical information on target aspect variation and also
the effects of lonospheric scintillation. The developments made in this
study provide the fundamental foundations for these extensions within the
precepts of the theory of statistical hypothesis testing. This work could
result in the optimum (minimum probability of error) classifier and would
be the standard against which competing methods are judged.

As indicated in the text of this report, no substantive effort
was expended to minimize the computer resource requirements (storage and
processing time) for the classifier. It is likely, however, that the imple-
mentation can be made very efficient. The parallel structure of the classi-
fier (Figure 8 ) suggests the promising approach of using parallel micro-
processor channels, each with its own small plug-in Read Only Memory (ROM).
The target library could be modified by simply changing the ROMs.
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SECTION 10
APPENDICES

10.1 THE SPACE-TIME INTEGRAL EQUATION METHOD

The basis of most Satellite Object Identification (SOI) techniques is
a signature library containing the characteristics of known targets. The
measured characteristics of the radar signals scattered by the unknown object
are then compared to this library of a priori known features. This signature
library is obtained either by measurement or by theoretical calculation of
the scattering response of objects. Until recently, fairly general but ap-
proximate computational methods were available only for the cases of target
size much smaller (Rayleigh region) or much larger (optical region) than
wavelengthe These frequency regions are useful for describing the volume
and projected area, respectively, of the target, but the appropriate fre-
quency region for shape characterization is the resonance band where wave-
length is of the order of target size. A generally applicable method for
computing the scattering response of an object at all frequencies is the
space-time integral equation method developed at the Sperry Research Center.
With this technique, the target response due to any radar waveform, regardless
of carrier frequency, can be computed.

The space-time integral equation method uses a two step approach to
obtain the impulse (or equivalently, frequency) response of an object. First,
the smoothed impulse response of the object is obtained by the solution of a
space-time integral equation. This equation gives the currents flowing on
the surface of the object from which the far field may be computed directly.
The second step involves the application of the impulse response augmentation
techniques. This technique combines the smoothed impulse response with the
known singular contributions to the impulse response to obtain the total
impulse response and the frequency response of the object at all frequenciese.
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10e1.1 SPACE-TIME INTEGRAL EQUATION SOLUTION

The space~time integral equation technique was developed
in 1968 T207. This powerful approach to the solution of transient
electromagnetic scattering and radiation problems consists of formulating
a time domain integral equation for the surface currents on the scatterer
in such a way that the integral eduation can be reduced to a recurrence
relation in time, thus making matrix inversion unnecessary. This equation
is then solved numerically for the surface currents, which, in turn, are

used to compute the far field.

This technique has been applied to closed surfaces [21, 22, 23, 24]
using an H-field integral equation and to wires r21, 25] and open, thin
surfaces 7247 using an E-field integral equation. 1In addition the method
was applied to wires on bodies [21, 267 and fins on bodies [27] using a
hybrid approach which applies an E-field integral equation over one part
of the target and an H-field integral equation over the other.

For the cases of the prolate spheroid and the sphere-capped cylin-
der used in this SOI application the formulation for closed surfaces is
usede The space-time integral equation for the surface current density is

derived using an H-field boundary condition, and is given by

- N\

1d = A~
Rc >t I(x 1) x &g

'rzt-R/C

e a =1 -y l R YR l ’ \
J(F,t) =2 x B (Ft)+ 52 f e x R—2-+ ds’ (10-1)
s

where
T= position vector to the observation
point on the surface
T/ = position vector to the integration
point
R=|T -7
A_;‘;I
o Tt
¢ = the speed of light
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3n = the unit normal to the surface at T

S = the surface.

The space-time integral equation in equation (10-1) represents,
in principle, the complete solution of the general scattering problem for an
excitation with arbitrary time dependence. However, in most practical scat-
tering problems the incident field is a plane wave. This is the space
variation which has been used to date, but it should be pointed out that
the solution of the scattering problem for other space variations of the
incident wave (e.g., a spherical incident wave) would be equally easy to

implement.

For numerical solution of the space-time integral equation in
equation (10-1), the incident wave was taken to be the standard Gaussian
regularization of an impulse, namely

2.2
8, (t) = 7% Tl (10-2)

which converges to the delta functional as n goes to infinity. The time
domain integral equation can be solved exactly for bodies with linear dimen-

sions up to several pulse widths of this regularized impulse.

To implement the numerical solution the scattering surface is
divided into curvilinear patches of approximately equal area with a space
sample point at the center of each patche The spacing of these sample
points (and thus, the size of the patches) on the surface is chosen small
enough to give both a good representation of the scatterer and also a good
representation of the currents that exist on the scatterer. Next, the
time increment At between the points in time at which the current is com-
puted must be less than the time it takes a wave, moving at the speed of
light, to travel between the closest space points. Satisfaction of this
condition insures that equation (10-1) can be solved without resorting to a
matrix inversion. Equation (10-1) is solved on a digital computer for the
current density by simply marching on in time. Once the current density
has been obtained, the far scattered field is computed.
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10.1.2 Impulse Response Augmentation Technique

The impulse response augmentation technique, first suggested in
1968, 207 deals directly with the smoothed impulse response of targets in
the far field. As described earlier, the smoothed impulse response is com-
puted using the space-time integral equation approach and has yielded good
results up to body sizes of several pulse widths or, equivalently, several
wavelengths. The regions of slow variation in the smoothed impulse response
remain the same in the exact impulse response; thus it is only necessary
to determine the structure of the singular regions and any other regions
of fast variation. But the singular portions of the exact impulse response
that result from scattering by specular points on smooth convex targets can
be computed exactly and hence do not need to be computed by solving the
space-time integral equation. The impulse response augmentation technique
combines the smoothed impulse response, the known singular contribution
to the impulse response, and the theory of Fourier transforms to produce
the total impulse response and the frequency response (system function) of

the target at all frequencies.

The feasibility of accurately computing the total frequency re-
sponse or the exact impulse response using the impulse response augmentation
technique has been demonstrated [28] for the case of the sphere by comparing
the computed responses with results obtained by classical solution of the
boundary value problem in the frequency domain and performing the inverse
Fourier transform. This technique has also been applied to the case of the
prolate spheroid and has yielded results in good agreement with measurements
and represents an improvement on the Moffatt-Kennaugh exponential sum ap-
proximation 28, 297.

In addition, results for the total impulse response and the fre=-
quency response over the entire spectrum have been obtained for the sphere-
capped cylinder, the sphere-cap flat-end cylinder, the right-circular
cylinder, the square flat plate and the cylinder with fins attached. Details
of the augmentation technique and displays of the results obtained may be
found in several references [24, 27, 28].
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10.1.3 Application to Prolate Spheroid and Sphere-Capped Cylinder

The impulse response augmentation technique was applied to obtain
the response of the prolate spheroid and the sphere-capped cylinder at an
arbitrary aspect angle and polarization. The smoothed impulse responses
of these targets were obtained using the space-time integral equation solu-
tion. The singular portions of the response were obtained by assuming phy-
sical optics currents on the scattering surface. This reduces the problem
to the determination of the projected area function.

Using this approach, the effect of the singular portions of the

impulse response of a prolate spheroid was expressed as

£,(t) = st(t/a-Tz) + (8 Szz)U(t/a-Tz) + Rzzrp(t/a-Tz) (10-3)

where
P_ = the impulse coefficient given by the physical optics
o approximation

Sz = the step coefficient given by the physical optics
approximation

522 = the step coefficient due to the polarization depen-
dence

R22 = the ramp coefficient due to the polarization depen-
dence

Tz = the time at which the leading edge of the impulse

response startse.

The values of the coefficients were determined for a prolate
spheroid, shown in Figure 24(a), with semiminor axis a and semimajor axis b.
The incident wave was assumed to make an angle 5, with the major axis. The

resulting expressions were

03

& w5
I, = " a
_3 @
pz 2 B
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The values of 822 and R22 were computed from the smoothed impulse
response r(t) initially in time by assuming that the total value of r(t) is
due to the convolution of fa(t) with the excitation e(t). The values of 522
and Rz2 were then determined by equating fa*'e with r(t) at the initial time
points in the smoothed impulse response and solving the resulting set of
linear algebraic equations. Confidence in this approach was further strenth-

ed by noting that the values of Sz and Rz2 were relatively independent

2
of the particular time points used for their solution. The fit to r(t) was
made for a set of incident angles and then a parabolic fit to those values

was used to determine the values of 522 and R22 for intermediate angles.

The same approach was also taken to obtain the response of a
sphere-capped cylinder. The effect of the singular portions of the respcnse

was expressed as

fa(t) =P 5(t/a ~ Tl) + 5, u(t/a - 'rl) + A, (t/a - rz)‘% u(t/a - T2)

 t/a - T
+ B, exp 5 2 (t/a - T2)~5 u(t/a - T2)
+ A, (t/a - T3)'£ u(t/a - T,)

/tfa = T
+ By exp | . 2 (t/a = T3)-% u(t/a - T3)

where

o
]

1 the impulse coefficient due to the specular return

[%2]
I

1 the step coefficient due to the specular return

= the coefficients due to the first sphere-cap/
cylinder join

N
-
MUJ
|
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328, the coefficients due to the second sphere-cap/
cylinder join

Tl = the time of the specular return
T2 = the time of the first join return
T3 = the time of the second join return.

The values of the coefficients were expressed for a sphere-capped cylinder,
shown in Figure 24(b), of radius a and length L. The incident wave was
assumed to make an angle ¢ with the axis of the cylinder. The resulting
values of the coefficients were

P, = a/@

S o= "'0025

al/é(sin a)3/2

Ay 21 c0s o (1 + sin y)
o R

Ay = =Ay

o

D =2a (1 - sin y)

T, = -2a

T2 = =23 sin gy

T3 = =2a sin ¢y + 2L cos «

Once the singular portions of the responses were determined, they
were then combined with the computed smoothed impulse responses and the
impulse response augmentation technique was appliede This yielded the
impulse response of the target and, using the Fourier transform, the fre-
quency response for any aspect angle and any polarizatione.

10.2 STATISTICS OF THE RCS MEASUREMENTS

Figure 25 is a model of a radar receiver which consists of a
matched filter, square-law envelope detector, and a video pulse averager
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with output z. For a signal in Gaussian noise it can be shown M97 that

q= Naz/w has a non-central chi-square distribution with 2Na degrees of

freedom and non-central parameter ) = Naf2/w where W is the total noise

power out of the matched filter, 02 is the square of the peak signal envelope,

and Na is the number of pulses averaged to obtain z. The peak (squared) sig- !

nal envelope is related to the target RCS by the radar equation

L AN

NE = | com—— e = w— (10_4\

‘ 3 4 4 d
(4n)°L |R R

]
where the usual notation is used. This relation defines the radar constant,

Ye

From these preliminary definitions, the RCS estimate (or measure-

ment) specified by

4
y= 5— (z-2w)
is unbiased. That is,
E(y) = o = true target RCS.
It can also be shown that
4
var (y) = 4§R jo + kR !
a X

where K = W/, is a constant of the radar.

The unbiased RCS estimate, y, is linearly related to the chi=-
square random variable, q, which has probability density [9]

/ \
Mooy
§ gt? 2 g o
pla) =3 %) INa'l (/ah ) exp e P

where In is the modified Bessel function of order n. The RCS measurement y
will therefore have a probability density of similar functional forme.
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The random RCS observations simulated for this study were generated
by summing the square of 2Na Gaussian random variables with means determined by
the true target RCS, the appropriate radar constant K, and the target range R.
This approach allowed exact simulation of the output of the system in Figure 25.

103 DETAILS OF THE LIKELIHOOD FUNCTIONS

As is evident from the discussion in Section 3, the function des-
cribing the probability density of the RCS observation, y, must be evaluated
many times during the execution of the classification algorithme. This com-
putational load can be greatly reduced if the Bessel function evaluations
are eliminated by using an approximation to the probability density func-
tion (likelihood function) for y. This could be accomplished using the
results of Patnaik [307, but we have chosen a simpler first-order approxi-
mation. As the degrees of freedom becomes large, the non-central chi-square
distribution may be roughly approximated by the normal or Gaussian distri-
bution 317

With this approach, y is linearly related to the Gaussian variate,
gy so that the approximate likelihood function for the RCS observation at
frequency f1 is

e TN
p(y) = | exp |

8ﬂK1R4 (o +K1R4);
i ] : ,
The approximate likelihood function for a multifrequency observa-
tion of target RCS will then be the multivariate Gaussian probability den-
sity function which is completely specified by its mean vector and covariance

: 8KiR4(c + KiR4)3
;

matrixe Since the random variability of the RCS measurements at different
frequencies is produced by the noise in different receiver channels, the
RCS measurements at different frequencies are statistically independent and
the covariance matrix is diagonal. If Y is the vector* multifrequency

*
T denotes the transpose of a matrixe
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observation of target RCS

Y = y.l.y2 o-ony
(

where y, is the RCS observation at frequency i, the approximate likelihood

T

function for Y is

P(Y) = L exp | -% (y-mT ¢l (Y=-M)

N
(2m) 2yt 2

where the covariance matrix has diagonal elements

4K.R4 5
i !

B3 4
() = lci(o) + KiR :
a | i

and the mean vector has components

Mi(w) = ci(m)
Note that the last two equations make explicit the aspect, ¢, dependence of
the radar cross section and the subscript i is a frequency index. Although
not indicated above, this likelihood function is different for different
targets as manifested by the different sets of functions \si(@): i=1,2 eeeNg o

Reducing the matrix algebra to component form, the approximate
log-likelihood function for a single multifrequency radar observation of RCS,
assuming that a specified target is present, is given by

ey 2)
yk (Yla y2’ Lk YN s '3) = -2 ¢ nvi (’3) v G)
f = i
1=1 J
A\,
4KiR4 a
where Vi(w) = N, {ci(w) + KR

The generalized log-likelihood function is of identical form but o is
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replaced by 5, the maximum likelihood estimate of aspect. The multiple ob-
servation likelihood is the sum of the single-look functions as indicated

in Section 3.7.

The radar constants for the ALTAIR and TRADEX radars (obtained from

the data in references 4 and 5) are shown in the following table.

1

f

| Radar Frequency K

{ (MHzZ) (meter-z)

; =7 i

| ALTAIR 155.5 4.42 x 107°" |

| ALTATR a15. 7.19 x 10°2° |

- —5—

| TRADEX 1320. 3.71 x 10
TRADEX 2950.8 4.93 x 10728

Figure 26 shows the single pulse Signal to Noise Rat.o (SNR, for a
one square meter target as a function of range for all four operating modes
of the ALTAIR/TRADEX system.
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BASE UNITS:
_Quantity
length
mass
time

electric current
thermodynamic temperature
amount of substance
luminous intensity

SUPPLEMENTARY UNITS:

plane angle
solid angle

DERIVED UNITS:

Acceleration

activity (of a radioactive source)
anguiar acceleration
angular velocity

area

density

electric capacitance
electrical conductance
electric field strength
electric inductance
electric potential difference
electric resistance
electromotive force
energy

entropy

force

frequency
illuminance
luminance

luminous flux
magnetic field strength
magnetic flux
magnetic flux density
magnetomotive force
power

pressure

quantity of electricity
quantity of heat
radiant intensity
specific heat

stress

thermal conductivity
velocity

viscosity, dynamic
viscosity, kinematic
voltage

volume

wavenumber

work

SI PREFIXES:

METRIC SYSTEM

_Unit

metre
kilogram
second
ampere
kelvin
mole
candela

radian
steradian

metre per second squared
disintegration per second
radian per second squared
radian per second

square metre

kilogram per cubic metre
farad

siemens

volt per metre

henry

volt

ohm

volt

joule

joule per kelvin

newton

hertz

lux

candela per square metre
lumen

ampere per metre

weber

tesla

ampere

watt

pascal

coulomb

joule

watt per steradian

joule per kilogram-kelvin
pascal

watt per metre-kelvin
metre per second
pascal-second

square metre per second
volt

cubic metre

reciprocal metre

joule

_ Multiplication Factors

1 000 000 000 000 = 10'?
1 000 000 000 = 10*

1 000 000 = 10*
1000 = 10°

100 = 10?

10 = 10'

0.1=10"

0.01 = 10~?

0001 = 107"

0.000 001 = 10" *

0.000 DOO 001 =

0.000 000 000 001 =

0.000 000 000 000 001 =
0.000 000 000 000 000 001

e svorded where possible

|

10"
10"
|

S1 Symbol

m

kg

s

A

K

mol

cd

rad

ST

F

S

H

\%

A%

J

N

Hz

Ix

Im

Wb

g

A

w

Pa

(&

J

Pa

v
Prefix
lora
sige
mega
kilo
hecto*
deka*
deci*
centi®
milli
micro
nano
pico

fomto
alto

Formula

m/s
(disintegration)/s
rad/s
rad/s
m
kg/m
A-slV
AN
Vim
V-s/A
WA
VIA
WIA
N-m
K
kg:m/s
(cycle)s
Im/m
cd/m
cd-sr
A/m
Vs
Wb/m
Jis
N/m
A-s
N-m
Wisr
]Ikg-K
N/m
Wim:K
m/s
Pa-s
m/s
WIA

m
(wave)m
N-m

SI Symbol
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MISSION
of
Rome Air Development Center

RADC plans and conducts research, exploratory and advanced
development programs in command, control, and communications
(C3) activities, and in the ¢ areas of informatior sciences
and intelligence. The principal technical mission areas 0,
are communications, electromagnetic guidance and control,
surveillance of ground and aerospace objects, intelligence

data collection and handling, information system technology,
ionospheric propagation, solid state sciences, microwave
physics and electronic reliability, maintainability and

0
compatibility. %
by
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